Cytochrome P450/NADPH-dependent biosynthesis of 5,6-trans-epoxyeicosatrienoic acid from 5,6-trans-arachidonic acid.
نویسندگان
چکیده
5,6-trans-AA (5,6-TAA, where TAA stands for trans-arachidonic acid) is a recently identified trans fatty acid that originates from the cis-trans isomerization of AA initiated by the NO2 radical. This trans fatty acid has been detected in blood circulation and we suggested that it functions as a lipid mediator of the toxic effects of NO2. To understand its role as a lipid mediator, we studied the metabolism of 5,6-TAA by liver microsomes stimulated with NADPH. Profiling of metabolites by liquid chromatography/MS revealed a complex mixture of oxidized products among which were four epoxides, their respective hydrolysis products (dihydroxyeicosatrienoic acids), and several HETEs (hydroxyeicosatetraenoic acids) resulting from allylic, bis-allylic and (omega-1)/(omega-2) hydroxylations. We found that the C5-C6 trans bond competed with the three cis bonds for oxidative metabolism mediated by CYP (cytochrome P450) epoxygenase and hydroxylase. This was evidenced by the detection of 5,6-trans-EET (where EET stands for epoxyeicosatrienoic acid), 5,6-erythro-dihydroxyeicosatrienoic acid and an isomer of 5-HETE. A standard of 5,6-trans-EET obtained by iodolactonization of 5,6-TAA was used for the unequivocal identification of the unique microsomal epoxide in which the oxirane ring was of trans configuration. Additional lipid products originated from the metabolism involving the cis bonds and thus these metabolites had the trans C5-C6 bond. The 5,6-trans-isomers of 18- and 19-HETE were likely to be products of the CYP2E1, because a neutralizing antibody partially inhibited their formation without having an effect on the formation of the epoxides. Our study revealed a novel pathway of microsomal oxidative metabolism of a trans fatty acid in which both cis and trans bonds participated. Of particular significance is the detection of the trans-epoxide of AA, which may be involved in the metabolic activation of such trans fatty acids and probably contribute to their biological activity. Unlike its cis-isomer, 5,6-trans-EET was significantly more stable and resisted microsomal hydrolysis and conjugation with glutathione catalysed by hepatic glutathione S-transferase.
منابع مشابه
The rabbit pulmonary cytochrome P450 arachidonic acid metabolic pathway: characterization and significance.
Cytochrome P450 metabolizes arachidonic acid to several unique and biologically active compounds in rabbit liver and kidney. Microsomal fractions prepared from rabbit lung homogenates metabolized arachidonic acid through cytochrome P450 pathways, yielding cis-epoxyeicosatrienoic acids (EETs) and their hydration products, vic-dihydroxyeicosatrienoic acids, mid-chain cis-trans conjugated dienols,...
متن کاملRegulation of calcium influx and catecholamine secretion in chromaffin cells by a cytochrome P450 metabolite of arachidonic acid.
These studies were designed to determine the role of arachidonic acid metabolites in catecholamine secretion from adrenal chromaffin cells. Inhibitors of the cytochrome P450-dependent metabolism of arachidonic acid were shown to interfere with stimulus-secretion coupling in cultured chromaffin cells. Ketoconazole (10 microM), clotrimazole (20 microM), and piperonyl butoxide (50 microM) inhibite...
متن کاملAn epoxygenase metabolite of arachidonic acid mediates angiotensin II-induced rises in cytosolic calcium in rabbit proximal tubule epithelial cells.
Previous studies from this and other laboratories have shown that angiotensin II (AII) induces [Ca2+]i transients in proximal tubular epithelium independent of phospholipase C. AII also stimulates formation of 5,6-epoxyeicosatrienoic acid (5,6-EET) from arachidonic acid by a cytochrome P450 epoxygenase and decreases Na+ transport in the same concentration range. Because 5,6-EET mimics AII with ...
متن کاملIncreases in levels of epoxyeicosatrienoic and dihydroxyeicosatrienoic acids (EETs and DHETs) in liver and heart in vivo by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and in hepatic EET:DHET ratios by cotreatment with TCDD and the soluble epoxide hydrolase inhibitor AUDA.
The environmental toxin and carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin) binds and activates the transcription factor aryl hydrocarbon receptor (AHR), inducing CYP1 family cytochrome P450 enzymes. CYP1A2 and its avian ortholog CYP1A5 are highly active arachidonic acid epoxygenases. Epoxygenases metabolize arachidonic acid to four regioisomeric epoxyeicosatrienoic acids (EETs) a...
متن کاملFormation of 19(S)-, 19(R)-, and 18(R)-hydroxyeicosatetraenoic acids by alcohol-inducible cytochrome P450 2E1.
When reconstituted with cytochrome b5 and NADPH cytochrome P450 oxidoreductase, cytochrome P450 2E1 metabolized lauric, stearic, oleic, linoleic, linolenic, and arachidonic acid to multiple metabolites. Two major metabolites, accounting for 78% of the total metabolism, were produced with arachidonic acid. The Vmax for total metabolite formation from arachidonic acid was 5 nmol/min/nmol P450 wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 390 Pt 3 شماره
صفحات -
تاریخ انتشار 2005